Analysis of Variance

Psychology 3256

Introduction

- We have t and z tests to deal with differences with one or two groups
- what if we have more than two groups?

an example

	AI	A2	A3
	85	67	52
	90	80	60
	77	75	65
x	84	74	59

Why do the scores vary?

- Or, what are the sources of variation
- Well individual difference
- and of course group differences

I never said there'd be no math..

any score = being human + group
differences + individual difference

•
$$x = \mu + \tau + \epsilon$$

The structural model of ANOVA

Let's make an assumption

$$\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$
$$\therefore \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_k^2$$
$$H_0 true$$

• This is the null hypothesis assumption

More assumptions

- Scores are randomly and normally distributed around the grand mean
- independent observations
- all sources of variabtion are in the model

Let's look at variance $\sigma_1^2 \approx s_1^2$ $\sigma_2^2 \approx s_2^2$

etc

 $\sigma_{\varepsilon}^2 \approx s^2 = \bar{s}_j^2 = \sum \frac{s_j^2}{k}$

Remember, by the CLT

 $S_{-x}^2 n = \sigma_{s}^2$

So, if Ho is true..

- E(MST)= σ_{ε}^{2}
- E(MSE) = σ_{ε}^2

If Ho is not true

• E(MSE)=
$$\sigma_{\varepsilon}^2$$

• E(MST)=
$$\sigma_{\varepsilon}^2 + n\sigma_{\tau}^2$$

SO...

 If we were to divide MST by MSE (MSE/ MST) we would have some estimate of how much extra variation MST is measuring

• i.e. T

• This is precisely what is done in ANOVA

The F word

- F = MST / MSE
- E(F|Ho true) ?
- E(F|Ha true) ?
- If Ho is true, then MST/MSE will be distributed as F(df_t,df_e)
- if not it will be distributed some other way

Partitioning SS and df

- SSTotal = SSTreatment + SSError
- dfTotal = dfTreatment +dfError

More Precisely..

$$\frac{\sum (x - \overline{x}_g)^2}{N - 1} = n \sum (\overline{x}_j - \overline{x}_g)^2 + \sum \sum (x - \overline{x}_j)^2}{\overline{k - 1}} \frac{1}{N - k}$$

ANOVA Summary Table

Source of Variation	df	MS	Ш
Between Groups	k-I	SSBG/k-I	MSBG/ MSWG
Within Groups	N-k	SSWG/N-k	
TOTAL	N-I		