t tests

Psychology 3256

Introduction

• Remember, to find the probability of a given value of a variable, if the variable is normally distributed, you just turn it into a z score

•
$$z = (x - \mu/\sigma)$$

• Look it up in a table, and we are in business

As interesting as this is...

- We are usually dealing with means, not with individual values
- Instead of knowing about the distribution of x, we usually care about the distribution of \overline{x}

The Central Limit Theorem

Given a population with a mean μ and a variance σ² the sampling distribution of the mean will have a mean of μ (μ_x = μ) and a variance of σ²/n. As n increases this distribution approaches normal **no** matter what the shape of the parent population distribution

Oooh the power

- The population distribution shape does not matter.
- What matters is random sampling (though not as much as you might think)
- so, to find out p(x) we just use our old friend the z score

So it changes a bit

an example

- Let's say 25 subjects are given an 'IQ Improvement course' and have their IQs tested after the course. They end up with a mean of 110.
- IQ in the population has a μ of 100 and a σ of 15

Do the plusses and take aways...

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$z = \frac{110 - 100}{\frac{15}{\sqrt{25}}}$$

$$z = \frac{10}{\frac{15}{5}}$$

$$z = \frac{10}{3} = 3.33 \rightarrow p(z > 3.33) < .00043$$

There is a problem here

- We don't typically know σ for a population
- Well $E(s^2) = \sigma^2$ right?
- We could just sub s² for σ² but now we have two sampling distributions
- The sampling distribution of s² will change depending on n
- so we cannot use z

remember

- t changes depending on the number of observations
- degrees of freedom to estimate σ^2 (by calculating s²) to be more precise
- Pretty powerful technique, you don't have to know anything about the population!

Pairs of observations

- Can also be used for pairs of observations
- Same with fmattching
- Be careful, now S_d subjects are different on everything if $y\delta\sqrt{n}$ matched

What if your pairs are not matched?

- Aha, two populations (maybe)
- well then they hypotheses are as follows
- $H_0 \mu_1 = \mu_2$
- Ha $\mu_1 \neq \mu_2$

The original t formula

Figure it out

 $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{t}$ error practically.... $t = \frac{(\bar{x}_1 - \bar{x}_2)}{t}$

error

Now for the error

• variances have to be weighted

So our formula is

So really we have the same formula, we just subbed different values in for the statistic, the Ho and the error

$$t = \frac{x_2 - x_1}{\sqrt{\frac{s_1^2 - x_1^2}{n_1^2 + \frac{s_2^2}{n_2^2}}}}$$

If the variances are not equal things change

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$$

Assumptions

- Independence of observations
- homogeneity of variance