
1

Servlets:
Introduction to Servlets

Simon Xu

5/10/02

Contents

§ Servlet Overview

§ First Servlet Program

§ Servlet Life Cycle

§ Browser/Servlet Communication

§ Servlet Session

§ Other advanced Topics

5/10/02

Contents

§ Servlet Overview

§ First Servlet Program

§ Servlet Life Cycle

§ Browser/Servlet Communication

§ Servlet Session

§ Other advanced Topics

5/10/02

What is a Servlet?

§ Java’s answer to the Common Gateway
Interface (CGI).

§ Applet: a java program that runs within the
web browser.

§ Servlet: a java program that runs within the
web server.
s Rapidly becoming the standard for building

web applications.

5/10/02

Life of a Servlet

Regardless of the application, servlets usually carry
out the following routine:

1. Read any data sent by the user
s Capture data submitted by an HTML form.

Web
Browser

Web
Server

Java
Servlet

Database

 1,2

 3

 4,5 6

 3

5/10/02

Life of a Servlet

2. Look up any HTTP information
s Determine the browser version, host name of client,

cookies, etc.

Web
Browser

Web
Server

Java
Servlet

Database

 1,2

 4,5 6

 3

2

5/10/02

Life of a Servlet

3. Generate the Results
s Connect to databases, connect to legacy applications,

Web
Browser

Web
Server

Java
Servlet

Database

 1,2

 4,5 6

 3

5/10/02

Life of a Servlet
4. Format the Results
s Generate HTML on the fly 3.

5. Set the Appropriate HTTP headers
s Tell the browser the type of document being

returned or set any cookies.

Web
Browser

Web
Server

Java
Servlet

Database

 1,2

 4,5 6

 3

5/10/02

Life of a Servlet

6. Send the document back to client

Web
Browser

Web
Server

Java
Servlet

Database

 1,2

 4,5 6

 3

5/10/02

What can we build with Servlets?

§ Search Engines

§ Personalization Systems

§ E-Commerce Applications

§ Shopping Carts

§ Product Catalogs

§ Intranet Applications

5/10/02

Server Side Options

§ There are many options for creating server side
applications.
s We will examine CGI briefly only.

§ This better enables us to understand servlets
within the broader context of web development.

§ Also enables us to better understand the
advantages and disadvantages of servlets.

5/10/02

Server Side Options

§ Common Gateway Interface (CGI)
§ Fast CGI
§ Mod Perl
§ Server Extensions
§ NSAPI
§ ISAPI

§ ASP
§ PHP
§ Cold Fusion

3

5/10/02

Common Features

§ All server side frameworks share a common
set of features:
§ Read data submitted by the user
§ Generate HTML dynamically based on user

input
§ Determine information about the client browser
§ Access Database systems
§ Exploit the HTTP protocol

5/10/02

Decision Points

§ When evaluating which server side framework to
use, you need to consider a number of critical
factors:
§ Ease of development:
§ How easily can you build new applications?

§ Performance:
§ How fast can the framework respond to queries?

§ Scalability:
§ Can the framework scale to thousands, millions of users?

§ Security:
§ Are there any inherent security vulnerabilities?

5/10/02

CGI

§ Represents one of the earliest, practical
methods for generating web content.

§ Primarily written in the Perl programming
language.

§ Unfortunately, traditional CGI programs
suffer from scalability and performance
problems.

§ Let’s examine these two problems…

5/10/02

CGI Architecture

w Browser initiates request

w Web server receives the request.

w For each request, web server spawns a new operating
system process to execute the CGI/Perl Program.

Web
Browser

Web
Server

Perl/CGI

 Create
New process

5/10/02

CGI Architecture

§ For each browser request, the web server
must spawn a new operating system
process.

Browser 1

Web
Server

Perl 1

Browser 2

Browser N

Perl 2

Perl N
5/10/02

CGI Architecture

§ Creating a new operating system process for
each request takes time and memory.

§ Hence, traditional CGI programs have
inherent performance and scalability
problems.

§ Every other server architecture tries to
address these problems.

4

5/10/02

Advantages of Servlets

§ Servlets have six main advantages:
§ Efficient

§ Convenient

§ Powerful

§ Portable

§ Secure

§ Inexpensive

5/10/02

Advantage 1: Efficient

§ For each browser request, the servlet
spawns a light weight thread.

§ This is faster and more efficient that
spawning a new operating system process.

§ Hence, servlets have better performance and
better scalability than traditional CGI.

5/10/02

Servlets Architecture
§ For each browser request, the web server

only spawn a new thread, not a new
operating system process.

Browser 1

Web
Server

Thread 1

Browser 2

Browser N

Thread 2

Thread N
5/10/02

Advantage 2: Convenient

§ Servlets include built-in functionality for:
§ Reading HTML form data

§ Handling cookies

§ Tracking user sessions

§ Setting HTTP headers

§ Java is object oriented

5/10/02

Advantage 3: Powerful

§ Servlets can talk directly to the web servers.

§ Multiple servlets can share data:
§ Particularly important for maintaining database

connections.

§ Includes powerful techniques for tracking
user sessions.

5/10/02

Advantage 4: Portable

§ One of the advantages of Java is its
portability across different operating
systems.

§ Servlets have the same advantages.
§ You can therefore write your servlets on

Windows, then deploy them on UNIX.
§ You can also run any of your servlets on

any Java-enabled web server, with no code
changes.

5

5/10/02

Advantage 5: Secure

§ Traditional CGI programs have a number of
known security vulnerabilities.

§ Hence, you usually need to include a separate
Perl/CGI module to supply the necessary
security protection.

§ Java has a number of built-in security layers.
§ Hence, servlets are considered more secure

than traditional CGI programs.

5/10/02

Advantage 6: Inexpensive

§ You can download free servlet kits for
development use.

§ You can therefore get started for free!

§ Nonetheless, production strength servlet
web servers can get quite expensive.

5/10/02

Review of Servlet Introduction

§ Servlets: a java program that runs within the
web server.

§ The simple life of Servlets

§ The applications using servlets

§ Advantages of Servlets

5/10/02

Contents

§ Servlet Overview

§ First Servlet Program

§ Servlet Life Cycle

§ Browser/Servlet Communication

§ Servlet Session

§ Other advanced Topics

5/10/02

Servlet Template

§ First, let’s take a look at a generic servlet
template.

§ All your future templates will follow this
general structure.

§ The most important pieces are noted in Red

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g. cookies) and HTML form data (e.g. data the user
 // entered and submitted).

 // Use "response" to specify the HTTP response status
 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

6

5/10/02

Generic Template

§ Import the Servlet API:

import javax.servlet.*;
import javax.servlet.http.*;

§ To create servlets, you must remember to
always use these two import statements.

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g. cookies) and HTML form data (e.g. data the user
 // entered and submitted).

 // Use "response" to specify the HTTP response status
 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

5/10/02

Generic Template

§ All your servlets must extend HTTPServlet.
§ HTTPServlet represents the base class for creating

Servlets within the Servlet API.
§ Once you have extended HTTPServlet, you must

override one or both:
§ doGet: to capture HTTP Get Requests
§ doPost: to capture HTTP Post Requests

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g. cookies) and HTML form data (e.g. data the user
 // entered and submitted).

 // Use "response" to specify the HTTP response status
 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

5/10/02

doGet doPost

§ doGet and methods each take two
parameters:

HTTPServletRequest: encapsulates all information

§ Form data, client host name, HTTP request headers.

HTTPServletResponse: encapsulate all information
servlet response.

HTTP Return status, outgoing cookies, HTML response.

§ servlet to handle both GET
doGet call or vice

versa.
5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g. cookies) and HTML form data (e.g. data the user
 // entered and submitted).

 // Use "response" to specify the HTTP response status
 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

7

5/10/02

Getting an OutputStream

§ The HTTPResponse object has a
getWriter() method.

§ This method returns a java.io.PrintWriter
object for writing data out to the Web
Browser.

PrintWriter out = response.getWriter();

5/10/02

Hello World!

§ We are finally ready to see our first real
servlet.

§ This servlet outputs “Hello World!” as plain
text, not HTML.

§ Let’s take a look at the code, and then see
the servlet in action.

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 }
}

5/10/02

Output Stream

§ Once you have an OutputStream object, you
just call the println() method to output to the
browser.

§ Anything you print will display directly
within the web browser.

§ As we will now see, you can also output
any HTML tags.

5/10/02

Generating HTML

§ To generate HTML you need to add two
steps:
§ Tell the browser that you are sending back

HTML.

§ Modify the println() statements to return valid
HTML.

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.println("<HTML>\n" +
 "<HEAD><TITLE>Hello World</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello World</H1>\n" +
 "</BODY></HTML>");

 }
}

HelloWorld.java

8

5/10/02

Generating HTML

§ To return HTML, you must set the content MIME
type to text/html:
§ response.setContentType("text/html");

§ Remember that you must set the content type
before you output any content.

§ Once you have set the MIME type, you can return
any HTML document you want.

5/10/02

How to compile your program?

§ Hence, you will need to do development on your
own machines.
§ This is fairly straightforward, but it takes some

time.

5/10/02

The Software

§ To develop servlets, you will need three pieces of
software:
§ Text Pad: a simple, text editor.

§ Java 2 Software Development Kit (JDK), Version 1.3

§ Java Servlet Development Kit (JSDK)
§ Contains the Servlet Runner for running Servlets on your own

machine.

§ You may use other replacement

5/10/02

Servlet Runner

§ 1. Starting Servlet Runner
§ Open an MS-DOS Window
§ Go to the JSDK2.1 root directory: CD c:\jsdk2.1
§ Run the startserver command: startserver

By default, Servlet Runner will run on Port 8080.
§ Open your web browser and go to: http://localhost:8080/
§ In your browser, you should see an index page of Sample servlets.

Click any one of the "Execute" links to run the servlet.

§ 2. Stopping Servlet Runner
§ To stop Servlet Runner, run the stopserver command: stopserver

5/10/02

§ Once you have verified that Servlet Runner is able

compile and run your own servlets.
§ servlet.jar file

§ Generate your .class file
% javac HelloWorld java

§ Helloworld.class file to
servlets directory

type: http://localhost servlet/
5/10/02

Review of First Servlet Program
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 out.println("<HTML>\n" +

 "<HEAD><TITLE>Hello World</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello World</H1>\n" +
 "</BODY></HTML>");
}

}

9

5/10/02

Contents

§ Servlet Overview

§ First Servlet Program

§ Servlet Life Cycle

§ Servlet Communication

§ Servlet Session

§ Other advanced Topics

5/10/02

Life of a Servlet

§ Birth: Create and initialize the servlet
§ Important method: init()

§ Life: Handle 0 or more client requests
§ Important method: service()

§ Death: Destroy the servlet
§ Important method: destroy()

5/10/02

Birth: The init() method

§ The init() method is called when the servlet is first
requested by a browser request.

§ It is not called again for each request.
§ Used for one-time initialization.

§ No concurrency issues during servlet initialization

§ There are two versions of the init() method:
§ Version 1: takes no arguments

§ Version 2: takes a servletConfig object as an
argument.

5/10/02

Property Files

§ To understand the difference between the two
init() options, you need to first understand
property files.

§ All Web Servers/Servlet Runners maintain a
central properties file for storing constants.

§ You can add your own properties here. For
example:
§ Database settings, user names, passwords, URLs, etc.

5/10/02

Servlet Runner

§ Our Servlet Runner maintains a properties
file at:
C:\jsdk2.1\examples\WEB-INF>servlets.properties

§ All initialization parameters go here.

§ Remember that the location and format of the
properties file is different for each web server.

§ The next slide shows a sample servlets.properties
file…

5/10/02

servlet.properties file
$Id: servlets.properties,v 1.2 $

Define servlets here

<servletname>.code=<servletclass>
<servletname>.initparams=<name=value>,<name=value>

snoop.code=SnoopServlet
snoop.initparams=initarg1=foo,initarg2=bar

Example Initialization
Parameters

10

5/10/02

servlet.properties Rules

§ To add your own properties, you need to
follow the servlet.properties rules.
§ You first need to register your servlet within

the property file:
<servletname>.code=<servletclass>

5/10/02

servlet.properties Rules

§ You can then add your own properties:
<servletname>.initparams=<name=value>,<name=value>
§ For example, the following registers the Birth

servlet, and sets its password parameter to
“bluemoon”:

Birth.code=Birth
Birth.initparams=password=bluemoon

5/10/02

Version 1: init() method

§ No parameters

§ Used when the servlet does not need to read
any property files.

§ Here’s an example:
public void init() throws ServletException {

…

}

5/10/02

Version 2: init() method

§ Used when the servlet needs to read from a

§ Here’s an example:
public void init (ServletConfig config)

throws ServletException {
super.init (config);

 …
 }

5/10/02

ServletConfig Object

§ Provides access to the servlet properties file.

§ Has a getInitParameter() method for
retrieving specific properties.

§ For example:
String message = config.getParameter (“message”);

String password = config.getInitParameter ("password");

5/10/02

Version 2: init() method Cont.

§ Let’s examine version 2 again:
public void init (ServletConfig config)

throws ServletException {
super.init (config);

 …
 }

§ It is important to call super.init().
§ The init() method of the superclass registers the

ServletConfig object so you can access it later.
§ Therefore, if you do not call super.init(), you will never

have access to the ServletConfig object.

11

Example

§ Let’s examine a simple example.

§ This example uses the 2nd init() option.

§ In this case, we have hard coded one
parameter, and read one parameter from the
properties file.

§ Once initialized, this program echos out its
initialization parameters.

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Birth extends HttpServlet {
 String projectCodeName;
 String password;
 // init() is called first
 public void init(ServletConfig config) throws ServletException {

super.init (config);
projectCodeName = new String ("Xerces");
password = config.getInitParameter ("password");

 }
 // Handle an HTTP GET Request
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.println ("Project Code Name: "+projectCodeName);
out.println ("Password: "+password);
out.close();

 }
}

Password is retrieved
from the properties
file.

5/10/02

serlvet.properties
$Id: servlets.properties,v 1.2 2000/04/02 02:04:01 duncan Exp $

Define servlets here

<servletname>.code=<servletclass>
<servletname>.initparams=<name=value>,<name=value>

#snoop.code=SnoopServlet
#snoop.initparams=initarg1=foo,initarg2=bar
cookie.code=CookieExample
cookie.initparams=foo
jsp.code=com.sun.jsp.runtime.JspServlet

Birth.code=Birth
Birth.initparams=password=bluemoon

5/10/02

Life of a Servlet---init()

§ The first time a servlet is called, the Servlet
is instantiated, and its init() method is
called.

§ Only one instance of the servlet is
instantiated.

§ This one instance handles all browser
requests.

5/10/02

Life of a Servlet

§ Birth: Create and initialize the servlet
§ Important method: init()

§ Life: Handle 0 or more client requests
§ Important method: service()

§ Death: Destroy the servlet
§ Important method: destroy()

5/10/02

Service() Method

§ Each time the server receives a request for a servlet, the
server spawns a new thread and calls the servlet’s service
() method.

Browser

Browser

Browser Web Server
Single Instance

of Servlet

service()

service()

service()

12

5/10/02

Let’s Prove it…

§ To prove that only one instance of a servlet is created,
let’s create a simple example.

§ The Counter Servlet keeps track of the number of times
it has been accessed.

§ This example maintains a single instance variable,
called count.

§ Each time the servlet is called, the count variable is
incremented.

§ If the Server created a new instance of the Servlet for
each request, count would always be 0!

5/10/02

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Counter extends HttpServlet {
// Create an instance variable
int count = 0;

// Handle an HTTP GET Request
public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException, ServletException {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
count++;
out.println ("Since loading, this servlet has "

+ "been accessed "+ count + " times.");
out.close();

}
}

Only one instance of the
counter Servlet is created.
Each browser request is
therefore incrementing the
same count variable.

5/10/02

The Service Method

§ By default the service() method checks the HTTP
Header.

§ Based on the header, service calls either doPost()
or doGet().

§ doPost and doGet is where you put the majority of
your code.

§ If your servlets needs to handle both get and post
identically, have your doPost() method call
doGet() or vice versa.

5/10/02

Thread Synchronization

§ By default, multiple threads are accessing the same servlet
at the same time.

§ You therefore need to be careful to synchronize access to
shared data.
§ For example, what happens if two browsers request a

stock trade for the same account at the same time.
§ Synchronization is, however a large topic in itself, and I

will skip it here.
§ Nonetheless, there is an option called the

SingleThreadModel…

5/10/02

SingleThreadModel Interface

§ To prevent multi-threaded access, you can have your servlet
implement the SingleThreadModel:

public class FormServlet extends HttpServlet implements

SingleThreadModel {

…

}

§ This will guarantee that your servlet will only process one browser
request at a time.

§ It therefore addresses most synchronization issues.

§ Unfortunately, this can result in severe slowing of performance.

5/10/02

Life of a Servlet

§ Birth: Create and initialize the servlet
§ Important method: init()

§ Life: Handle 0 or more client requests
§ Important method: service()

§ Death: Destroy the servlet
§ Important method: destroy()

13

5/10/02

Death of a Servlet

§ Before a server shuts down, it will call the
servlet’s destroy() method.

§ You can handle any servlet clean up here.
For example:
§ Updating log files.

§ Closing database connections.

§ Closing any socket connections.

5/10/02

Example: Death.java

§ This next example illustrates the use of the
destroy() method.

§ While alive, the servlet will say “I am
alive!”.

§ When the server is stopped, the destroy()
method is called, and the servlet records its
time of death in a “rip.txt” text file.

5/10/02

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Death extends HttpServlet {

 // Handle an HTTP GET Request
 public void doGet(HttpServletRequest request, HttpServletResponse

response) throws IOException, ServletException
 {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.println ("I am alive!");
out.close();

 } Continued….
5/10/02

// This method is called when one stops the Java Web Server

 public void destroy() {
try {

FileWriter fileWriter = new FileWriter ("rip.txt");
Date now = new Date();
String rip = "I was destroyed at: "+now.toString();
fileWriter.write (rip);
fileWriter.close();

} catch (IOException e) {
e.printStackTrace();

}
 }
}

5/10/02

Example rip.txt file

I was destroyed at: Thu Aug 24 11:10:58 CDT 2000

Putting it all together

14

5/10/02

A Persistent Counter

§ Now that we know all about the birth, life and
death of a servlet, let’s put this knowledge
together to create a persistent counter.

§ The Counter.java example we covered earlier has
a big problem:
§ When you restart the web server, counting starts all

over at 0.

§ It does not retain any persistent memory.

5/10/02

Persistent Counter

§ To create a persistent record, we can store
the count value within a “counter.txt” file.
§ init(): Upon start-up, read in the current

counter value from counter.txt.

§ destroy(): Upon destruction, write out the new
counter value to counter.txt

5/10/02

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CounterPersist extends HttpServlet {
 String fileName = "counter.txt";
 int count;

 public void init () {
try {
 FileReader fileReader = new FileReader (fileName);
 BufferedReader bufferedReader = new BufferedReader (fileReader);
 String initial = bufferedReader.readLine();
 count = Integer.parseInt (initial);
} catch (FileNotFoundException e) { count = 0; }

 catch (IOException e) { count = 0; }
catch (NumberFormatException e) { count = 0; }

 }

At Start-up, load the
counter from file.
In the event of any
exception, initialize
count to 0.

Continued….
5/10/02

 // Handle an HTTP GET Request
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
count++;
out.println ("Since loading, this servlet has "

+"been accessed "+ count + " times.");
out.close();

 } Each time the
doGet() method is
called, increment the
count variable.

Continued….

5/10/02

 // At Shutdown, store counter back to file
 public void destroy() {

try {
FileWriter fileWriter = new FileWriter (fileName);
String countStr = Integer.toString (count);
fileWriter.write (countStr);
fileWriter.close();

} catch (IOException e) {
e.printStackTrace();

}
 }
}

When destroy() is
called, store new
counter variable back
to counter.txt.

5/10/02

Review of Servlet Lifecycle

§ Loading servlets using class loader

§ Birth: Create and initialize the servlet, by
overriding init()

§ Life: Handle 0 or more client requests by
invocation of method service()

§ Death: Destroy the servlet by calling
destroy() method

15

5/10/02

 Questions?

