s’ N

Servlets:
Introduction to Servlets

Simon Xu

Contents

Servlet Overview

First Servlet Program

Servlet Life Cycle
Browser/Servlet Communication
Servlet Session

Other advanced Topics

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

5/10/02

Life of a Servlet
\- Regardless of the application, servlets usually carry

out the following routine:
/__ 1. Read any data sent by the user
& + Capture data submitted by an HTMI3_ form.

L
pe. Web . Java
Browser " Servlet

"

]
N Database

5/10/02

Contents

Servlet Overview

First Servlet Program

Servlet Life Cycle
Browser/Servlet Communication
Servlet Session

Other advanced Topics

5/10/02

\ "\ I‘\ l‘\ "\ I‘

What is a Servlet?

Java s answer to the Common Gateway
Interface (CGl).

Applet: ajavaprogram that runs within the
web browser.

Servlet: ajavaprogram that runs within the
web server.

+ Rapidly becoming the standard for building
web applications.

\ I‘\ l‘\ l‘\ I‘

5/10/02

\2

Life of a Servlet

-
2. Look up any HTTP information
+ Determine the browser version, host name of client,
cookies, etc.

Web Web 1.2 Java
Browser Server Servlet
~ : 5

K]
Database

5/10/02

2.\ l‘\ l‘\ I‘

/4
\‘\

\ "\ I‘\ l‘\ "\ I‘

Life of a Servlet

3. Generate the Results
+ Connect to databases, connect to legacy applications,

Web - Java
Browser " Servlet

Database

5/10/02

Java
Servlet

Database

5/10/02

Server Side Options

There are many optionsfor creating server side
applications.

+ Wewill examine CGlI briefly only.
This better enables us to understand servlets
within the broader context of web devel opment.

Also enables us to better understand the
advantages and disadvantages of servlets.

5/10/02

Life of a Servlet
== 4. Format the Results
+ Generate HTML onthefly 3.

5. Set the Appropriate HTTP headers

+ Téll the browser the type of document being
returned or set any cookies.

Web * Java
Browser 6) Servlet

5/10/02

‘\ 2.\ I‘

V2 N2

Database

\/‘

What can we build with Servlets?

Search Engines
Personalization Systems
E-Commerce Applications
Shopping Carts

Product Catalogs

Intranet Applications

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

Server Side Options

Common Gateway Interface (CGl)
Fast CGlI
Mod Perl
Server Extensions
= NSAPI
= |SAPI
ASP
PHP
Cold Fusion

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Common Features

All server side frameworks share a common
set of features:
= Read data submitted by the user
= Generate HTML dynamically based on user
input
= Determine information about the client browser
= Access Database systems
= Exploit the HTTP protocol

\ l‘\ I‘

\I‘\l

5/10/02

\2

CGl

Represents one of the earliest, practical
methods for generating web content.
Primarily written in the Perl programming
language.

Unfortunately, traditional CGI programs
suffer from scalability and performance
problems.

Let’s examine these two problems...

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

CGlI Architecture

For each browser request, the web server
must spawn a new operating system
- process.

4 cor 1 N

we
\ Server @
=

, 5/10/02

Decision Points

When evaluating which server side framework to
use, you need to consider a number of critical
- factors:
= Ease of development:

How easily can you build new applications?
= Performance:

How fast can the framework respond to queries?
= Scalability:

Can the framework scale to thousands, millions of users?
= Security:

Are there any inherent security vulnerabilities?

\ l‘\ I‘

5/10/02

\ /‘\ I‘\ 4

CGlI Architecture

Browser initiates request
Web server receives the request.

For each request, web server spawns a new operating
system process to execute the CGI/Perl Program.

Create
Web Web New process
< Browser Server >

2.\ l‘\ l‘\ I‘

N
, 5/10/02

CGlI Architecture

Creating a new operating system process for
each request takes time and memory.

Hence, traditional CGI programs have
inherent performance and scalability
problems.

Every other server architecture tries to
address these problems.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Advantages of Servlets

Servlets have six main advantages:
= Efficient

= Convenient

= Powerful

= Portable

= Secure

= |nexpensive

\ "\ I‘\ l‘\ "\ I‘

5/10/02

-
Servlets Architecture
. For each browser request, the web server

only spawn a new thread, not a new
ws Operating system process.

~

¥ srowser 1 N e

oo R e —»@
Server

Ao N

]

N

, 5/10/02

Advantage 3: Powerful

Servlets can talk directly to the web servers.
Multiple servlets can share data:

= Particularly important for maintaining database
connections.

Includes powerful techniques for tracking
user sessions.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Advantage 1: Efficient

For each browser request, the servlet
spawns alight weight thread.

Thisisfaster and more efficient that
spawning a new operating system process.
Hence, servlets have better performance and
better scalability than traditional CGl.

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Advantage 2: Convenient

Servletsinclude built-in functionality for:
= Reading HTML form data
= Handling cookies
= Tracking user sessions
= Setting HTTP headers
Javais object oriented

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

Advantage 4: Portable

One of the advantages of Javaisits
portability across different operating
systems.

Servlets have the same advantages.
Y ou can therefore write your servlets on
Windows, then deploy them on UNIX.

You can aso run any of your servlets on
any Java-enabled web server, with no code
changes.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Advantage 5: Secure

Traditional CGI programs have a number of
known security vulnerabilities.

Hence, you usually need to include a separate
Perl/CGIl module to supply the necessary
Ssecurity protection.

Java has a number of built-in security layers.

Hence, servlets are considered more secure
than traditional CGI programs.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Review of Servlet Introduction

Servlets: ajava program that runs within the
web server.

The simplelife of Servlets
The applications using servlets
Advantages of Servlets

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

5/10/02

Servlet Template

First, let’stake alook at a generic servlet
template.

All your future templates will follow this
general structure.

The most important pieces are noted in

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Advantage 6: Inexpensive

Y ou can download free servlet kits for
development use.

Y ou can therefore get started for freel

Nonethel ess, production strength servlet
web servers can get quite expensive.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Contents

Servlet Overview

First Servlet Program

Servlet Life Cycle
Browser/Servlet Communication
Servlet Session

Other advanced Topics

\ "\ I‘\ l‘\ "\ I‘

5/10/02

-
\ fnport java.io.*;

>

MWHublic class ServletTenplate

/4

throws ServletException, |OException {

Use "request” to read incom ng HTTP headers

(e.g. cookies) and HTM. formdata (e.g. data the user
entered and subnitted).

Use "response” to specify the HTTP response status
code and headers (e.g. the content type, cookies).

Use "out" to send content to browser

—

5/10/02

\ IJ\ I‘\ l‘\

Generic Template

Import the Serviet API:

To create servlets, you must remember to
always use these two import statements.

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Generic Template

All your servlets must extend HTTPServlet.
HTTPServlet represents the base class for creating
Servlets within the Servlet API.
Once you have extended HTTPServlet, you must
override one or both:

= doGet: to capture HTTP Get Requests

= doPost: to capture HTTP Post Requests

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

doGet doPost

doGet and hods each take two
parameters:
HTTPServietRequest: encapsulates all information

\ l‘\ I‘

Form data, client host name, HTTP request headers.
HTTPServietResponse: encapsulate all information
servlet response.
HTTP Return status, outgoing cookies, HTML response.
servlet to handle both GET
doGet call or vice
versa

5/10/02

\ /‘\ I‘\ 4

fnport java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

>

MW ublic class ServletTenplate

/4

throws Servl et Exception, |OException {
/1 Use "request" to read inconming HTTP headers
Il (e.g. cookies) and HTM. formdata (e.g. data the user
/1 entered and subnitted).
Il Use "response" to specify the HTTP response status
/1 code and headers (e.g. the content type, cookies).

/1 Use "out" to send content to browser

—

\ IJ\ I‘\ l‘\

5/10/02

fnport java.io.*;
port javax.servlet.*;
import javax.servlet.http.*;

V2

MW ublic class ServletTenpl ate extends HttpServiet {

/4

throws ServletException, |OException {
/1 Use "request" to read inconming HTTP headers
Il (e.g. cookies) and HTM. formdata (e.g. data the user
/1 entered and subnitted).
Il Use "response" to specify the HTTP response status
/1 code and headers (e.g. the content type, cookies).

/1 Use "out" to send content to browser

—

5/10/02

\ IJ\ I‘\ l‘\

fnport java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

MW ublic class ServletTenpl ate extends HttpServiet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, |OException {

/1 Use "request" to read inconming HTTP headers

Il (e.g. cookies) and HTM. formdata (e.g. data the user
/1 entered and subnitted)

/1 Use "response" to specify the HITP response status
/1 code and headers (e.g. the content type, cookies)

/1 Use "out" to send content to browser

5/10/02

Getting an OutputStream

The HTTPResponse object has a
getWriter() method.

This method returns a java.io.PrintWriter
object for writing data out to the Web
Browser.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

-
N import java.io.*;

import javax.servlet.*;
\-anort javax.servlet.http.*;
wPpublic class HelloWorld extends HttpServlet {
®®public void doGet(HttpServletRequest request,
~ HttpServletResponse response)

throws ServletException, IOException {

\ "\ I‘\ l‘\ "\ I‘

Hello World!

We are finally ready to see our first real
servlet.

This servlet outputs “Hello World!” as plain
text, not HTML.

Let'stake alook at the code, and then see
the servlet in action.

5/10/02

Output Stream

Once you have an OutputStream object, you
just call the printin() method to output to the
browser.

Anything you print will display directly
within the web browser.

Aswe will now see, you can also output

any HTML tags.

\ "\ I‘\ l‘\ "\ I‘

5/10/02 5/10/02

&% Helloworld.java
v

Generating HTML

To generate HTML you need to add two
steps:
= Tell the browser that you are sending back
HTML.

= Modify the printIn() statements to return valid
HTML.

\ l‘\ I‘

‘\l

\l‘\l

5/10/02

g Mport java.io.*;
import javax.servlet.*
import javax.servlet.http.*;

ublic class HelloWorld extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();

}

5/10/02

}

Generating HTML

To return HTML, you must set the content MIME
type to text/htmi:

Remember that you must set the content type
before you output any content.

Once you have set the MIME type, you can return
any HTML document you want.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

The Software

To develop servlets, you will need three pieces of
software:

= Text Pad: asimple, text editor.

= Java 2 Software Development Kit (JDK), Version 1.3

= Java Servlet Development Kit (JSDK)

Contains the Servlet Runner for running Servlets on your own
machine.

Y ou may use other replacement

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

®% . Onceyou have verified that Servlet Runner is able

compile and run your own servlets.
. serviet.jar file

Generate your .classfile
% javac Helloworld java
Helloworld.classfileto
servlets directory

type: http://localhost serviet/
, 5/10/02

How to compile your program?

Hence, you will need to do development on your
own machines.

Thisisfairly straightforward, but it takes some
time.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Servlet Runner

1. Starting Servlet Runner
= Open an MS-DOS Window
= Go tothe JISDK2.1 root directory: CD c:\jsdk2.1
Run the startserver command: startserver
By default, Servlet Runner will run on Port 8080.
= Open your web browser and go to: http://localhost:8080/
= Inyour browser, you should see an index page of Sample servlets.
Click any one of the "Execute" links to run the servlet.
2. Stopping Servlet Runner
= To stop Servlet Runner, run the stopserver command: stopserver

\ l‘\ /‘\ I‘

5/10/02

\l‘\l

ass Review of First Servlet Program

inport java.io.*;

public class ServletTenplate

throws Servl et Exception, |OException {

—

5/10/02

\ l‘\ l‘\ l‘\ l‘\

Contents

Servlet Overview

First Servlet Program
Serviet Life Cycle
Servlet Communication
Servlet Session

Other advanced Topics

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Birth: The init() method

The init() method is called when the servlet is first
requested by a browser request.
It isnot called again for each request.

= Used for one-time initialization.

= No concurrency issues during servlet initialization
There are two versions of the init() method:

= Version 1: takes no arguments

= Version 2: takes aservletConfig object asan

argument.

5/10/02

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

Servlet Runner

Our Servlet Runner maintains a properties
file at:
C:\jsdk2.1\examples\WEB-INF>servlets.properties

All initialization parameters go here.

Remember that the location and format of the
propertiesfileis different for each web server.

The next slide shows a sample servlets.properties
file...

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Life of a Servlet

Birth: Create and initialize the servlet
= Important method: init()

Life: Handle O or more client requests
= Important method: service()

Death: Destroy the servlet

= Important method: destroy()

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Property Files

To understand the difference between the two
init() options, you need to first understand
property files.
All Web Servers/Servlet Runners maintain a
central propertiesfile for storing constants.
Y ou can add your own properties here. For
example:

= Database settings, user names, passwords, URLS, etc.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

servlet.properties file
it $1d: servlets.properties,v 1.2 $

V2

Define servlets here

B9: <servietname> code=<servietclass>
<servletname>.initparams=<name=value>,<name=value>

\Nig N2

mmsnoop.code=SnoopServlet
N snoop.initparams=initarg1=foo,initarg2=har

B Example Initialization

" :

]
4 Parameters
. 4

5/10/02

\ "\ I‘\ l‘\ "\ I‘

-
~
"

-
N
Lo

-
N
"

\l‘\l

\ l‘\ /‘\ I‘

\l‘\l

servlet.properties Rules

To add your own properties, you need to
follow the servlet.propertiesrules.

You first need to register your servlet within
the property file:
<servletname>.code=<servletclass>

5/10/02

Version 1: init() method

No parameters
Used when the servlet does not need to read
any property files.
Here' s an example:
public void init() throws ServletException {

- .

5/10/02

ServletConfig Object

Provides access to the servlet propertiesfile.
Has a getInitParameter() method for
retrieving specific properties.

For example:
String message = config.getParameter (“message”);
String password = config.getlnitParameter ("password");

5/10/02

servlet.properties Rules

You can then add your own properties:
<servletname>.initparams=<name=value> <name=value>

For example, the following registers the Birth
servlet, and sets its password parameter to
“bluemoon’:
Birth.code=Birth
Birth.initparams=password=bluemoon

\ l‘\ /‘\ I‘

5/10/02

\l‘\l

Version 2: init() method

\ l‘\ I‘

=¥ = Here'san example:

public void init (ServletConfig config)
throws ServletException {
super.init (config);

}...

\ /‘\ I‘\ 4

5/10/02

Version 2: init() method Cont.

Let's examine version 2 again:
public void init (ServletConfig config)
throws ServletException {

}
It isimportant to call super.init().
Theinit() method of the superclass registers the
ServletConfig object so you can accessit later.
Therefore, if you do not call super.init(), you will never
have access to the ServletConfig object.

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Used when the servlet needs to read from a

10

Example

Let's examine a simple example.
This example uses the 2 init() option.

In this case, we have hard coded one
parameter, and read one parameter from the
propertiesfile.

Once initialized, this program echos out its
initialization parameters.

\ "\ I‘\ l‘\ "\ I‘

serlvet.properties

#8ld: servlets.properties,v 1.2 2000/04/02 02:
Define servlets here

wa # <servletname>.code=<servletclass>
<servlethame>.initparams=<name=value>,<name=value>

#snoop.code=SnoopServiet
#snoop.initparams=initarg1=foo,initarg2=bar
cookie.code=CookieExample

cookie.initparams=foo
jsp.code=com.sun.jsp.runtime.JspServlet

5/10/02

Life of a Servlet

Birth: Create and initialize the serviet
= Important method: init()

¥ . Death: Destroy the serviet
= Important method: destroy()

\ l‘\ /‘\ I‘

\l‘\l

5/10/02

import java.io.*;
Mimport javax.servlet.;

\ import javax.servlet.http.*; Password is retrieved

from the properties
, public class Birth extends HttpServiet { file.
tring projectCodeName;

tring password;
AN/ init() is called first

}
Il Handle an HTTP GET Request
/Juhlic void doGet(HttpServietRequest request, HttpServletResponse response)
throws IOException, ServletException {

response.setContentType("text/plain");
PrintWriter out = response.getWriter();
out.println ("Project Code Name: "+projectCodeName);
out.println ("Password: "+password);

Lo

- i
t.close();

\) out.cl ;

,}

5/10/02

Life of a Servlet---init()

Thefirst time aservlet is called, the Servlet
isinstantiated, and itsinit() method is
called.

Only one instance of the servlet is
instantiated.

This one instance handles al browser
requests.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Service() Method

Each time the server receives arequest for aservlet, the
server spawns anew thread and calls the servlet’s service
() method.

Browser N senvice()
Single Instance

Web Server
Browser of Servlet

Browser 8

5/10/02

11

Let’s Prove it...

To prove that only one instance of aservlet is created,
let’s create a simple example.

The Counter Servlet keeps track of the number of times
it has been accessed.

This example maintains a single instance variable,
called count.

Each time the servlet is called, the count variableis
incremented.

If the Server created a new instance of the Servlet for
each request, count would always be 0!

5/10/02

\ "\ I‘\ l‘\ "\ I‘

The Service Method

By default the service() method checksthe HTTP
Header.

Based on the header, service calls either doPost()
or doGet().

doPost and doGet is where you put the majority of
your code.

If your servlets needs to handle both get and post
identically, have your doPost() method call
doGet() or vice versa.

-
~
"

-
N
Lo

-
~
Lo

-
A
Lo

-
N
v

5/10/02

SingleThreadModel Interface

To prevent multi-threaded access, you can have your servlet
implement the SingleThreadModel:

public class FormServlet extends HttpServletimplements
SingleThreadModel {

}

Thiswill guarantee that your servlet will only process one browser
request at atime.

It therefore addresses most synchronization issues.
Unfortunately, this can result in severe slowing of performance.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

dﬁport java.io.r;
AN javax.serviet.; Only one instance of the
import javax.serviet http. counter Servlet is created.

/ i blic class Counter extends HttpServlet { Each bmv_vser reque_‘St B
Il Create an instance variable therefore incrementing the

same count variable.

/I Handle an HTTP GET Request

public void doGet(HttpServietRequest request,

HttpServietResponse response) throws IOException, ServletException {
response.setContentType("text/plain”);
PrintWriter out = response.getWriter();

out.println ("Since loading, this servlet has "

+"been accessed "+ count + " times.");
out.close();

5/10/02

\ f‘\ I‘\ l‘\ A

Thread Synchronization

By default, multiple threads are accessing the same servlet
at the same time.
Y ou therefore need to be careful to synchronize accessto
shared data.

= For example, what happensif two browsers request a

stock trade for the same account at the same time.

Synchronization is, however alarge topic initself, and |
will skip it here.
Nonetheless, there is an option called the
SingleThreadModel ...

\ "\ I‘\ l‘\ "\ I‘

5/10/02

Life of a Servlet

Birth: Create and initialize the servlet
= Important method: init()

Life: Handle O or more client requests
= Important method: service()

5/10/02

\ "\ I‘\ l‘\ "\ I‘

12

Death of a Servlet

Before a server shuts down, it will call the
servlet’s destroy() method.
Y ou can handle any servlet clean up here.
For example:

= Updating log files.

= Closing database connections.

= Closing any socket connections.

\ l‘\ /‘\ I‘

5/10/02

\l‘\l

iinport java.io.*;
Ay import java.util.¥;
import javax.serviet.*;
@ import javax.serviet.http.*;
-

public class Death extends HttpServlet {
#w/ Handle an HTTP GET Request

~ public void doGet(HttpServletRequest request, HttpServletResponse
response) throws IOException, ServletException

,-

A response.setContentType("text/plain”);
PrintWriter out = response.getWriter();

Lo

- out.close();
v)
, 5/10/02

Example rip.txt file

| was destroyed at: Thu Aug 24 11:10:58 CDT 2000

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Example: Death.java

This next example illustrates the use of the
destroy() method.

While alive, the servlet will say “I am
alivel”.

When the server is stopped, the destroy()
method is called, and the servlet recordsits
time of death in a“rip.txt” text file.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

Sl This method is called when one stops the Java Web Server

public void destroy() {
- try {

V2

FileWriter fileWriter = new FileWriter ("rip.txt");
Date now = new Date();
String rip = "l was destroyed at: "+now.toString();

fileWriter.close();
} catch (IOException e) {
e.printStackTrace();
}

5/10/02

\ 'L}_ﬂ'l\ l‘\ A

s’ N

Putting it all together

13

A Persistent Counter

Now that we know all about the birth, life and
death of aservlet, let’s put this knowledge
together to create a persistent counter.

The Counter.java example we covered earlier has
abig problem:

= When you restart the web server, counting starts all
over at 0.

= |t does not retain any persistent memory.

5/10/02

\ "\ I‘\ l‘\ "\ I‘

import java.io.*;
wmilmport java.util.¥;
ASwimport javax.serviet.t;

import javax.serviet.http.*; At Start-up, load the

counter from file.
In the event of any
exception, initialize
count to 0.

MPliblic class CounterPersist extends HttpServiet {
N String fileName = "counter.xt";
int count;

\1ublic void init () {

U

BufferedReader bufferedReader = new BufferedReader (fileReader);

String initial = bufferedReader.readLine();
count = Integer.parselnt (initial);
} catch (FileNotFoundException €) { count = 0; }
catch (IOException e) { count=0;}
catch (NumberFormatException e) { count = 0; }

5/10/02

II" At Shutdown, store counter back to file
public void destroy() {
- try {
FileWriter fileWriter = new FileWriter (fileName);
String countStr = Integer.toString (count);

fileWriter.close();
} catch (IOException e) {
e.printStackTrace();
} When destroy() is
1 called, store new
¥ counter variable back

~

P to counter.txt.
-

N

v

5/10/02

Persistent Counter

To create a persistent record, we can store
the count value within a*“ counter.txt” file.
= init(): Upon start-up, read in the current
counter value from counter.txt.

= destroy(): Upon destruction, write out the new
counter value to counter.txt

\ l‘\ /‘\ I‘

5/10/02

\l‘\l

Il Handle an HTTP GET Request
,public void doGet(HttpServletRequest request, HttpServletResponse response)
. throws |OException, ServietException {
response.setContentType("text/plain”);
PrintWriter out = response.getWriter();

out.printin ("Since loading, this servlet has "
+"been accessed "+ count + " times.");
out.close();
Each time the
doGet() method is
called, increment the

-

~

"

~

P count variable.
-

N

v

5/10/02

Review of Servlet Lifecycle

L oading servlets using class loader

Birth: Create and initialize the servlet, by
overriding init()

Life: Handle O or more client requests by
invocation of method service()

Death: Destroy the servlet by calling
destroy() method

\ "\ I‘\ l‘\ "\ I‘

5/10/02

14

G
c
S
B
S
(04

&
WO

—\ /—\ /—\ /—\ /—\ A\

15

